On Quantized Stochastic Navier-stokes Equations

نویسندگان

  • R. MIKULEVICIUS
  • B. L. ROZOVSKII
چکیده

A random perturbation of a deterministic Navier-Stokes equation is considered in the form of an SPDE with Wick type nonlinearity. The nonlinear term of the perturbation can be characterized as the highest stochastic order approximation of the original nonlinear term u∇u. This perturbation is unbiased in that the expectation of a solution of the perturbed/quantized equation solves the deterministic Navier-Stokes equation. The perturbed equation is solved in the space of generalized stochastic processes using the Cameron-Martin version of the Wiener chaos expansion. The generalized solution can be obtained as a limit or an inverse of solutions to corresponding quantized equations. It is shown that the generalized solution is a Markov process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic Lagrangian Proof of Global Existence of the Navier-stokes Equations for Flows with Small Reynolds Number

We consider the incompressible Navier-Stokes equations with spatially periodic boundary conditions. If the Reynolds number is small enough we provide an elementary short proof of the existence of global in time Hölder continuous solutions. Our proof is based on the stochastic Lagrangian formulation of the Navier-Stokes equations, and works in both the two and three dimensional situation.

متن کامل

Stochastic Navier-stokes Equations with Fractional Brownian Motions

The aim of this dissertation is to study stochastic Navier-Stokes equations with a fractional Brownian motion noise. The second chapter will introduce the background results on fractional Brownian motions and some of their properties. The third chapter will focus on the Stokes operator and the semigroup generated by this operator. The Navier-Stokes equations and the evolution equation setup wil...

متن کامل

Stochastic Navier-stokes Equations

1. Stochastic Integration on Hilbert spaces 2 1.1. Gaussian measures on Hilbert spaces 2 1.2. Wiener processes on Hilbert spaces 6 1.3. Martingales on Banach spaces 7 1.4. Stochastic integration 8 1.5. Appendix: Stochastic integration w.r.t. cylindrical Wiener processes 12 2. Stochastic Di erential Equations on Hilbert spaces 13 2.1. Mild, weak and strong solutions 13 2.2. Existence and uniquen...

متن کامل

Lagrangian Structures for the Stokes, Navier-stokes and Euler Equations

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

متن کامل

N ov 2 00 8 LAGRANGIAN STRUCTURES FOR THE STOKES , NAVIER - STOKES AND EULER EQUATIONS by Jacky Cresson & Sébastien Darses

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010